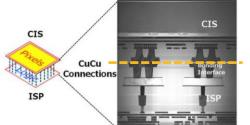
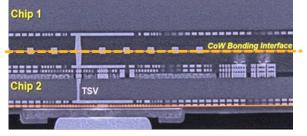


MORE THAN MOORE MARKET AND TECHNOLOGY TRENDS - APPLICATION DRIVERS FOR WAFER BONDING



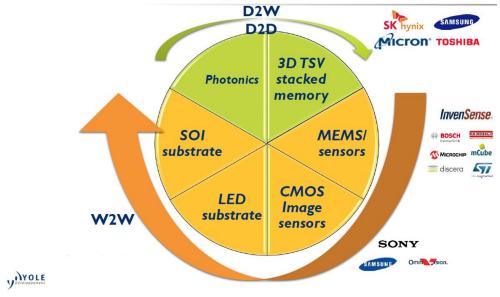
- + Demand for "More than Moore" devices is expected at CAGR (2017-23) of 4 13% by Yole Développement
- + Wafer to Wafer (W2W) and Die to Wafer (D2W) bonding is required in many of these applications see examples below

Overall wafer demand for More than Moore devices Breakdown by More than Moore application - in 8 inch eq



Source: Yole (2018, 2019)

Sony CMOS Image Sensor (CIS) Source: Sony (2019)


InvenSense 7-axis MEMS Source: SystemPlus (2017)

tsmc SoIC[™] chip with 4μm TSVs and pitch of 9μm Source: Techsearch (2020)

APPLICATIONS REQUIRING PERMANENT BONDING

W2W Assembly technology used for More than More applications

MORE THAN MOORE MARKET AND TECHNOLOGY TRENDS - 2.5D AND 3D STACKING TECHNOLOGY

G-ALCS

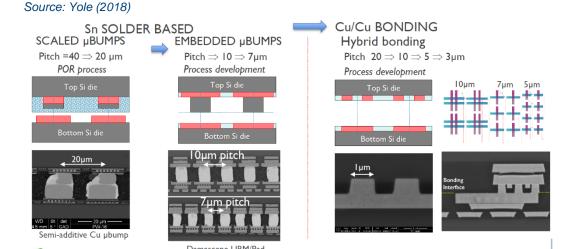
- 2.5D and 3D requires temporary bonding for wafer thinning as well as D2W or W2W bonding
- D2W bonding enables heterogeneous integration, high yield is achieved by stacking known good dies (KGD)
- + Hybrid bonding will be the main enabler for pitch scaling
 (TSV and μbump → Cu/Cu interconnects = hybrid bonding)
 - Used for latest generations of CMOS image sensors since 2017
 - Will be used for other new 3D devices by IDMs and foundries
- + Equipment market is forecasted at CAGR (2018-25) of ~25% by Yole Développement

Bonding Interface(s) No 3D IC No pitch 5µm pitch 2.5µm pitch <2 µm pitch <0.1 µm < 5µm <0.5 µm <0.2 µm <0.12 µm 2016 8GB HBM2 (3D memory) Source: Yole (2018) Source: Samsung

BSI CIS

With TSV Without TSV Without TSV With substrate FUITSU TSV Hybrid Bonding SHINKO Unimicron (intell) FUITSU TG FU

2.5D & 3D STACKING TECHNOLOGIES


interposer FOCoS

MAOLE

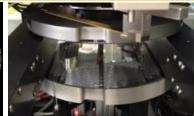
∕ semi⁻

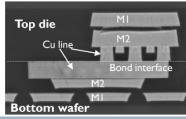
Source: imec (2020)

imec

Semi-additive Sn ubump

PRODUCT PORTFOLIO




Business Unit Bonder

More than Moore - MEMS and related

More than Moore - 2.5D and 3D

Semi-Automated Bonders

Automated Permanent Bonders

Automated Temporary Bonders, Debonders and Cleaners

XB8 (100kN)

XBS200 W2W Bonder

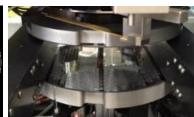
<100nm overlay to support pitch scaling trend in hybrid bonding

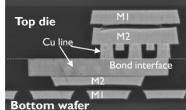
XBS300 Temporary Bonder

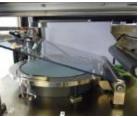
XBC300 Gen2 Debonder (mechanical / laser) and Cleaner

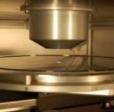
Comment / USP

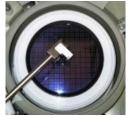
- Large installed base
 - Supports all traditional processes
- Supports new high force / high end processes
- Fixture-less aligned wafer handling for best cost of ownership


- Large installed base with ~40-50%¹⁾ market share for 2.5D and 3D memory
- Technology enabler applications such as CIS, FO-WLP
- Started transition from mechanical- to laser debonding for next generation of devices


GROWTH POTENTIAL – ON TRACK WITH SUSS STRATEGY 2025 PROJECTION







Thank you.